Tags: fft
Rating:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from scipy.signal import butter, lfilter
# Load the audio file
sample_rate, audio_data = wavfile.read('mastermind.wav')
# Function to apply a lowpass filter
def butter_lowpass_filter(data, cutoff, fs, order=5):
nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
y = lfilter(b, a, data)
return y
# Apply a lowpass filter
cutoff_frequency = 3000
filtered_audio_data = butter_lowpass_filter(audio_data, cutoff_frequency, sample_rate)
# Function to perform sliding window FFT
def sliding_window_fft(audio, window_size, step_size, sample_rate):
fft_values = []
times = []
num_windows = (len(audio) - window_size) // step_size
for i in range(num_windows):
start = i * step_size
end = start + window_size
windowed_audio = audio[start:end] * np.hanning(window_size)
fft_value = np.fft.fft(windowed_audio)
fft_values.append(np.abs(fft_value[:window_size//2]))
times.append((start + end) // 2 / sample_rate)
return np.array(fft_values).T, np.array(times)
# Perform sliding window FFT
window_size = 1024
step_size = 256
fft_values, times = sliding_window_fft(filtered_audio_data, window_size, step_size, sample_rate)
frequencies = np.fft.fftfreq(window_size, 1/sample_rate)[:window_size//2]
# DTMF keypad frequencies mapping
low_frequencies = [697, 770, 852, 941]
high_frequencies = [1209, 1336, 1477, 1633]
dtmf_mapping = {
(697, 1209): '1', (697, 1336): '2', (697, 1477): '3', (697, 1633): 'A',
(770, 1209): '4', (770, 1336): '5', (770, 1477): '6', (770, 1633): 'B',
(852, 1209): '7', (852, 1336): '8', (852, 1477): '9', (852, 1633): 'C',
(941, 1209): '*', (941, 1336): '0', (941, 1477): '#', (941, 1633): 'D'
}
# Find the nearest frequency in the given list
def find_nearest_frequency(frequency, frequency_list):
return min(frequency_list, key=lambda x: abs(x - frequency))
# Function to format timestamp
def format_timestamp(time_in_seconds):
seconds = int(time_in_seconds)
milliseconds = int((time_in_seconds % 1) * 1000)
return f"{seconds}.{milliseconds:03d}"
```
```python
import pandas as pd
# Function to detect DTMF tones with top-2 FFT frequencies and detected characters
def detect_dtmf_tones_with_characters(fft_values, frequencies, low_frequencies, high_frequencies, dtmf_mapping):
detected_tones = []
for i, time_slice in enumerate(fft_values.T):
# Find the indices of the two most intensive frequencies
top_two_indices = np.argsort(time_slice)[-2:][::-1]
top_two_frequencies = frequencies[top_two_indices]
top_two_intensities = time_slice[top_two_indices]
fft_freq1 = min(top_two_frequencies)
fft_freq2 = max(top_two_frequencies)
# Identify low and high frequencies based on the top two frequencies
low_freq = find_nearest_frequency(fft_freq1, low_frequencies)
high_freq = find_nearest_frequency(fft_freq2, high_frequencies)
# Map to DTMF character
detected_character = dtmf_mapping.get((low_freq, high_freq), None)
# Get the corresponding time in seconds
time_in_seconds = times[i]
# Append to detected tones
detected_tones.append((time_in_seconds, low_freq, high_freq, [fft_freq1, fft_freq2], top_two_intensities, detected_character))
return detected_tones
# Detect DTMF tones with top-2 FFT frequencies and detected characters
detected_tones_with_characters = detect_dtmf_tones_with_characters(fft_values, frequencies, low_frequencies, high_frequencies, dtmf_mapping)
# Creating a list of dictionaries for detected tones with characters
detected_tones_data_with_characters = []
for result in detected_tones_with_characters:
timestamp, low_freq, high_freq, fft_freqs, intensities, character = result
detected_tones_data_with_characters.append({
'timestamp': timestamp,
'low_freq': low_freq,
'high_freq': high_freq,
'fft_freq1': fft_freqs[0],
'fft_freq2': fft_freqs[1],
'intensity1': intensities[0],
'intensity2': intensities[1],
'character': character
})
# Converting the list of dictionaries into a pandas DataFrame with characters
detected_tones_df_with_characters = pd.DataFrame(detected_tones_data_with_characters)
# Displaying the first 10 rows of the DataFrame with characters
detected_tones_df_with_characters.head(10)
```
```python
tones = detected_tones_df_with_characters
```
```python
tones = tones[(tones.intensity2 * tones.intensity1) > 1e12]
```
```python
tones.sample(10)
```
```python
tones
```
```python
tones['delta'] = ((tones['fft_freq1'] - tones['low_freq']).abs() * (tones['fft_freq2'] - tones['high_freq']).abs())
```
/tmp/ipykernel_2009135/824670098.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
tones['delta'] = ((tones['fft_freq1'] - tones['low_freq']).abs() * (tones['fft_freq2'] - tones['high_freq']).abs())
```python
```
```python
tones['delta'].plot()
```
<Axes: >
![png](output_8_1.png)
```python
tones = tones[tones['delta'] < 10 ** 4]
```
```python
tones['character_prev'] = tones['character'].shift()
```
/tmp/ipykernel_2009135/3924296832.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
tones['character_prev'] = tones['character'].shift()
```python
tones_sequence = tones.copy()
tones_sequence['sequence_index'] = (~(tones['character'] == tones['character_prev'])).cumsum()
# [~(tones['character'] == tones['character_prev'])][['timestamp', 'character']]
```
```python
tones_sequence['count'] = 1
```
```python
tones_sequence = tones_sequence.groupby('sequence_index').agg({'count': 'sum', 'character': 'first', 'timestamp': 'first'})
```
```python
tones_sequence['count'] = (tones_sequence['count'] / 28).round().astype(int)
```
```python
tones_sequence['phrase_index'] = ((tones_sequence['timestamp'] - tones_sequence['timestamp'].shift()) / 0.35 > 3).cumsum()
```
```python
tones_sequence = tones_sequence.groupby('phrase_index').agg({'character': list, 'count': list})
```
```python
tones_sequence.apply(lambda x: ''.join([a * b for a, b in zip(*x)]), axis=1)
```
phrase_index
0 41323036267601217574
1 36710992825315281347
2 60924906937541136999
3 02333
dtype: object
```python
value = int(''.join(tones_sequence.apply(lambda x: ''.join([a * b for a, b in zip(*x)]), axis=1)))
```
```python
# Converting to hexadecimal
hex_representation = hex(value)
hex_representation
hex_string = hex_representation[2:] # Removing the '0x' prefix
bytes_representation = bytes.fromhex(hex_string)
bytes_representation.decode()
```
'dsc{m0th3r_1s_m0th3r1ng_ts}'
```python
```
I think you meant to post this: https://github.com/dremovd/ctf/blob/main/deconstruct/whatThePy.ipynb for whatThe