Rating:
## LINDA
### Challenge
> Dan Boneh loves to improve cryptosystems, you should be loving breaking them?
`nc 07.cr.yp.toc.tf 31010`
- [linda.txz](https://cr.yp.toc.tf/tasks/linda_a26f6987ed6c630297c2df0847ef258ad3810ca2.txz)
```python
#!/usr/bin/env python3
from Crypto.Util.number import *
from math import gcd
from flag import flag
def keygen(p):
while True:
u = getRandomRange(1, p)
if pow(u, (p-1) // 2, p) != 1:
break
x = getRandomRange(1, p)
w = pow(u, x, p)
while True:
r = getRandomRange(1, p-1)
if gcd(r, p-1) == 1:
y = x * inverse(r, p-1) % (p-1)
v = pow(u, r, p)
return u, v, w
def encrypt(m, pubkey):
p, u, v, w = pubkey
assert m < p
r, s = [getRandomRange(1, p) for _ in '01']
ca = pow(u, r, p)
cb = pow(v, s, p)
cc = m * pow(w, r + s, p) % p
enc = (ca, cb, cc)
return enc
def die(*args):
pr(*args)
quit()
def pr(*args):
s = " ".join(map(str, args))
sys.stdout.write(s + "\n")
sys.stdout.flush()
def sc():
return sys.stdin.readline().strip()
def main():
border = "+"
pr(border*72)
pr(border, " .:::::: LINDA Cryptosystem has high grade security level ::::::. ", border)
pr(border, " Can you break this cryptosystem and find the flag? ", border)
pr(border*72)
pr('| please wait, preparing the LINDA is time consuming...')
from secret import p
u, v, w = keygen(p)
msg = bytes_to_long(flag)
pubkey = p, u, v, w
enc = encrypt(msg, pubkey)
while True:
pr("| Options: \n|\t[E]xpose the parameters \n|\t[T]est the encryption \n|\t[S]how the encrypted flag \n|\t[Q]uit")
ans = sc().lower()
if ans == 'e':
pr(f'| p = {p}')
pr(f'| u = {u}')
pr(f'| v = {v}')
pr(f'| w = {w}')
elif ans == 's':
print(f'enc = {enc}')
elif ans == 't':
pr('| send your message to encrypt: ')
m = sc()
m = bytes_to_long(m.encode('utf-8'))
pr(f'| encrypt(m) = {encrypt(m, pubkey)}')
elif ans == 'q':
die("Quitting ...")
else:
die("Bye ...")
if __name__ == '__main__':
main()
```
### Solution
By interacting with the challenge, we can get public key parameters by sending `e`, get encrypted flag with `s`, encrypt our own messages with `t` and quit with `q`. Only the first two options will be relevant to the solution.
Encryption here works like this: $p, u, v, w$ are public key parameters, message $m$ is encrypted as
follows:
$$
ca \equiv u^r \mod p \\
cb \equiv v^s \mod p$ \\
cc \equiv mw^{r + s} \mod p
$$
where $r, s$ are uniformly random numbers from $[1;p]$.
We can notice that despite $p$ being new on each connection, $p - 1$ is always smooth. Example:
```python
p = 31236959722193405152010489304408176327538432524312583937104819646529142201202386217645408893898924349364771709996106640982219903602836751314429782819699
p - 1 = 2 * 3 * 11 * 41 * 137 * 223 * 7529 * 14827 * 15121 * 40559 * 62011 * 429083 * 916169 * 3810461 * 4316867 * 20962993 * 31469027 * 81724477 * 132735437 * 268901797 * 449598857 * 2101394579 * 2379719473 * 5859408629 * 11862763021 * 45767566217
```
This is the key for solving this challenge, because after getting public key paramters and encrypted flag we can factor $p - 1$ by using trial division and [ECM](https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization), then use [Pohlig-Hellman algorithm](https://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm) to compute $r, s$ as discrete logarithms of $ca, cb$ with bases $u, v$ respectively even without trying to find weaknesses in the keygen process. Then we can compute $m \equiv ccw^{-(r + s)} \mod p$ and get the flag.
```python
#!/usr/bin/env sage
from minipwn import remote # mini-pwntools library to connect to server
from Crypto.Util.number import long_to_bytes
rem = remote("07.cr.yp.toc.tf", 31010)
for _ in range(10):
rem.recvline()
rem.sendline('e')
p = int(rem.recvline()[6:])
u = int(rem.recvline()[6:])
v = int(rem.recvline()[6:])
w = int(rem.recvline()[6:])
for _ in range(5):
rem.recvline()
rem.sendline('s')
ca, cb, cc = map(int, rem.recvline()[7:-2].split(b', '))
r = discrete_log(Mod(ca, p), Mod(u, p)) # sage has built-in discrete logarithm function, which uses Pohlig-Hellman
s = discrete_log(Mod(cb, p), Mod(v, p)) # algorithm and automatically determines and factors group order, which divides p - 1
m = cc * power_mod(w, -(r + s), p) % p
print(long_to_bytes(m).decode())
```
##### Flag
`CCTF{1mPr0v3D_CrYp7O_5yST3m_8Y_Boneh_Boyen_Shacham!}`