Rating: 4.0
# Bad Python
> My friend wrote a cool program to encode text data! His code is sometimes hard to understand, and only he knows how it works. I ran the program twice, but forgot the input I used for the first time. I didn't save the key I used either, but I know it was 15 characters long. Can you figure out what text I encoded the first time?
Attached are 4 files:
Output1
```
b'\x02\x19\x01\x16Q\r\x07\nS\x02)\x1a1=EE2\x0e=G/D\nRY)\nV\x1bJ'
```
Input 2
```
Lorem ipsum dolor sit amet, consectetur adipiscing elit
```
Output 2
```
b':\x1c\x10\x07ZV\x1a\x12\x11B\x1bS\x06\r[\x19\x01B\x11^\x02S\x03\x0fR\x02_B\x01X\x18\x00\x07\x01C\x13\x07\x17\x10\x17\x17\x17\x0b\x12^\x05\x10\x0b\x0cPV\x16\x0e\x0bC'
```
Source
```python
import random
A=bool
N=ord
y=sorted
Y=list
h=bin
T=int
e=range
F=len
L=open
O=repr
R=random.shuffle
import itertools
import functools
D=functools.reduce
S=A
P=lambda a,b:(N(a)^N(b)).to_bytes(1,'big')
B='[redacted - 15 chars]'
E=((0,3),(1,4),(0,1),(3,4),(2,3),(1,2))
B=y(Y(B))
x=lambda a,b:h((N(a)-N(b))^(T('1'*10,2)))[0]!='-'
def u(li):
Q=[li[i::3]for i in e(3)]
for i in Q:
while not W(i):
pass
return Q
def W(i):
R(i)
a=[S(T(h(N('e'))[2:][-1]))]
return[n(a,x(i[E[j][0]],i[E[j][1]]))for j in e(F(E))][-1]
def n(g,k):
g[0]=g[0]and k
return g[0]
f=u(B)
a=L('input.txt','r').read()
m='output.txt'
L(m,'w').write(O(b''.join([D(P,[(((N(a[i])&(~N(f[j][i%5])))|((~N(a[i]))&(N(f[j][i%5])))).to_bytes(1,"big"))for j in e(F(f))])for i in e(F(a))])))
# if c%100000==0:
# print(i)
# print(c)
```
## Description
Here we get some obfuscated code. But if we reverse engineer it, we will know how the key is used to encrypt messages, and therefore we can deduce the 15 char key, and with it decrypt the first output.
## Solution
### Deobfuscate Python
Let's have a look at what happens here. Apart from constants definitions and functions, the real code is the following:
```python
B=y(Y(B))
f=u(B)
a=L('input.txt','r').read()
m='output.txt'
L(m,'w').write(O(b''.join([D(P,[(((N(a[i])&(~N(f[j][i%5])))|((~N(a[i]))&(N(f[j][i%5])))).to_bytes(1,"big"))for j in e(F(f))])for i in e(F(a))])))
```
#### Password transformation
Here `B` is the password. `Y(B)` transforms the password as a list of char, and then is sorted (this is because `y=sorted`). So actually the order of the characters in the password doesn't matter.
Then the password is transformed using `f=u(B)`. Here is what `u` does:
```python
def u(li):
Q=[li[i::3]for i in range(3)]
for i in Q:
while not W(i):
pass
return Q
```
`Q` is an array of arrays. There are 3 arrays, and array `i` contains the characters of the password whose index is `i` modulo 3 (array 0 contains characters 0,3,... of the password).
Then, each subarray is given to `W` until it returns `True`.
```python
def W(i):
random.shuffle(i)
a=[S(T(h(N('e'))[2:][-1]))]
return[n(a,x(i[E[j][0]],i[E[j][1]]))for j in e(F(E))][-1]
```
The line `a=[S(T(h(N('e'))[2:][-1]))]` is actually a constant and does not depend on the input. It is equivalent to `a=[True]`. Then it constructs the array `[n(a,x(i[E[j][0]],i[E[j][1]]))for j in e(F(E))]` and returns the last element.
Let's deobfuscate this:
```python
E=((0,3),(1,4),(0,1),(3,4),(2,3),(1,2))
[n(a,x(i[E[j][0]],i[E[j][1]])) for j in range(len(E))]
```
For every element `(e1,e2)` in `E`, the array contains `n(a,x(i[e1], i[e2]))`. At the beginning, `a` is a single cell array containing `True`. `n(a,b)` changes this cell to be `a[0] and b`. Therefore the array contains some `True`, but once one cell is `False` every subsequent will be `False`. We are only interested in cells returning always `True` as otherwise `W` will be called again.
Therefore `W` shuffles our input array `i` until for all pair `(e1,e2)` in `E`, `x(i[e1], i[e2]) == True`.
Let's write `x` in a prettier fashion:
```python
def x(a,b):
difference = ord(a) - ord(b)
c = difference ^ 0b1111111111
return c >= 0
```
So actually `x` only compares `a` and `b` and returns `True` if `a >= b`. So the function `W` is true if and only if `i[0] >= i[1] >= i[2] >= i[3] >= i[4]`.
In the end, `f` is an array of array with every array containing one char out of 3 of the password and sorted in decreasing order.
#### Encryption
Then comes the real encryption.
```python
a=L('input.txt','r').read()
m='output.txt'
L(m,'w').write(O(b''.join([D(P,[(((N(a[i])&(~N(f[j][i%5])))|((~N(a[i]))&(N(f[j][i%5])))).to_bytes(1,"big"))for j in e(F(f))])for i in e(F(a))])))
```
`a` holds the input, and it writes in `output.txt`:
```python
repr(b''.join([functools.reduce(P,[(((ord(a[i])&(~ord(f[j][i%5])))|((~ord(a[i]))&(ord(f[j][i%5])))).to_bytes(1,"big"))for j in range(len(f))])for i in range(len(a))]))
```
Here we learn that characters are encrypted one by one. Character `a[i]` if the input is encrypted in the following way:
```python
functools.reduce(P,[(((ord(a[i])&(~ord(f[j][i%5])))|((~ord(a[i]))&(ord(f[j][i%5])))).to_bytes(1,"big"))for j in range(len(f))])
```
Let's simplify this. For a given `j`, we have actually only two values: `ord(a[i])` and `ord(f[j][i%5])`. If we denote them `a` and `f`, the computation is `a & ~f | ~a & f`, which actually corresponds to `a ^ f`. As the `reduce` operation is also a xor operation, we can simplify it. The encryption of character `a[i]` is:
```python
ord(a[i]) ^ ord(f[0][i%5]) ^ ord(f[1][i%5]) ^ ord(f[2][i%5])
```
It uses characters by groups of 3, and they are consecutive in the original password. If password were `abcdefghijklmno`, then the first group corresponding to `i%5 = 0` would be `mno`, the one corresponding to `i%5=1` would be `jkl`, etc...
### Password retrieval
Once we know this, we can bruteforce the password by groups of 3.
```python
first_input = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit'
first_output = b':\x1c\x10\x07ZV\x1a\x12\x11B\x1bS\x06\r[\x19\x01B\x11^\x02S\x03\x0fR\x02_B\x01X\x18\x00\x07\x01C\x13\x07\x17\x10\x17\x17\x17\x0b\x12^\x05\x10\x0b\x0cPV\x16\x0e\x0bC'
output = [' ']*15
maxichar = 127 # We know password is sorted
for j in range(5):
possibles = []
for c1 in range(32, maxichar):
for c2 in range(c1, maxichar):
for c3 in range(c2,maxichar):
possibles.append((c1, c2, c3))
for i in range(j, len(first_input), 5):
x = ord(first_input[i])
possibles2 = []
for c in possibles:
c1, c2, c3 = c
if (x ^ c1 ^ x2 ^ c3) == first_output[i]:
possibles2.append((c1,c2,c3))
possibles = possibles2
print((possibles))
if len(possibles) == 0:
break
output[(4-j)*3] = chr(possibles[-1][0])
output[(4-j)*3+1] = chr(possibles[-1][1])
output[(4-j)*3+2] = chr(possibles[-1][2])
maxichar = possibles[-1][0]+1
print("".join(output))
```
And here we get one possible password: `7bbbbbbsssvvv~~`.
### Decryption
Finally we can decrypt the output easily
```python
key = '7bbbbbbsssvvv~~'
second_output = b'\x02\x19\x01\x16Q\r\x07\nS\x02)\x1a1=EE2\x0e=G/D\nRY)\nV\x1bJ'
second_input = []
for j in range(len(second_output)):
c1, c2, c3 = ord(key[(4-j%5)*3]), ord(key[(4-j%5)*3+1]), ord(key[(4-j%5)*3+2])
second_input.append(chr(second_output[j] ^ c1 ^ c2 ^ c3))
print("".join(second_input))
```
Flag: `tjctf{th15_iS_r3Al_pY7h0n_y4y}`