Tags: rabin crt crypto 

Rating: 3.0

## Solution

First, we have to decompose `n` into `p` and `q`. To solve this we simply solve for `r` when `pubkey` is given,

```python
pubkey = p*q
pubkey = (3 * r**2 + 2 * r + 7331)*(17 * r**2 + 18 * r + 1339)
```

We do this using `sagemath`,

```python
r = var('r')
p = 3 * r**2 + 2 * r + 7331
q = 17 * r**2 + 18 * r + 1339
n = 577080346122592746450960451960811644036616146551114466727848435471345510503600476295033089858879506008659314011731832530327234404538741244932419600335200164601269385608667547863884257092161720382751699219503255979447796158029804610763137212345011761551677964560842758022253563721669200186956359020683979540809
print(solve([p*q == n], r))
```

This gives us several answers but we are only concerned with the whole answer, and with `r` we can recover `p` and `q`

```python
r = 57998468644974352708871490365213079390068504521588799445473981772354729547806
p = 3 * r**2 + 2 * r + 7331
q = 17 * r**2 + 18 * r + 1339
```

With `p` and `q` we can get the `sqrt(ct) mod n`

```python
ct = 66888784942083126019153811303159234927089875142104191133776750131159613684832139811204509826271372659492496969532819836891353636503721323922652625216288408158698171649305982910480306402937468863367546112783793370786163668258764837887181566893024918981141432949849964495587061024927468880779183895047695332465L

ct_sqrt_p = int(Mod(ct,p).sqrt())
ct_sqrt_q = int(Mod(ct,q).sqrt())

pt = crt(-ct_sqrt_p, -ct_sqrt_q, p, q)
assert pt**2 % n == ct

from Crypto.Util.number import *
print(long_to_bytes(pt))
```

Note that here that all of the following are valid solutions but only one would result to a readable plaintext.
```python
pt = crt(ct_sqrt_p, ct_sqrt_q, p, q)
pt = crt(-ct_sqrt_p, ct_sqrt_q, p, q)
pt = crt(ct_sqrt_p, -ct_sqrt_q, p, q)
pt = crt(-ct_sqrt_p, -ct_sqrt_q, p, q)
```

Original writeup (https://github.com/pberba/ctf-solutions/tree/master/20181223_xmasctf/crypto-050-hanukkah).