Tags: cryptography-rsa
Rating:
We're given a short Ruby code used to encrypt the flag, the public key and the encrypted flag.
```
require 'openssl'
e = 65537
while true
p = OpenSSL::BN.generate_prime(1024, false)
q = OpenSSL::BN.new(e).mod_inverse(p)
next unless q.prime?
key = OpenSSL::PKey::RSA.new
key.set_key(p.to_i * q.to_i, e, nil)
File.write('publickey.pem', key.to_pem)
File.binwrite('flag.encrypted', key.public_encrypt(File.binread('flag')))
break
end
```
Reading the code we immediately notice that the problem is in the key generation: we have $q \equiv e^{-1} \pmod{p}$. From this equation we can write $qe=1+kp$ for some $k \in \mathbb{Z}$ and then $kp^2+p-ne=0$. So we have to find such $k$; rewriting $k = \frac{qe-1}{p}\sim\frac{q}{p}e$ we can see that $k\in \[\min{\frac{q}{p}e-1},\max{\frac{q}{p}e}\]$. Because $q\in \mathbb{Z_p}$ we have $\frac{q}{p}< 1$ and running
`openssl rsa -pubin -in publickey.pem -text -noout`
we can see $n\sim 2048$ bits, so because $p\sim 1024$ bits also $q\sim 1024$ bits and $\frac{q}{p}\geq \frac{1}{2}$. Now we only have to check the values of $k$ from $\frac{1}{2}e-1$ to $e$ and then decrypt the flag (in less than 3 seconds with the following script).
```
import gmpy2
from Crypto.PublicKey import RSA
e = 65537L
n = 16809924442712290290403972268146404729136337398387543585587922385691232205208904952456166894756423463681417301476531768597525526095592145907599331332888256802856883222089636138597763209373618772218321592840374842334044137335907260797472710869521753591357268215122104298868917562185292900513866206744431640042086483729385911318269030906569639399362889194207326479627835332258695805485714124959985930862377523511276514446771151440627624648692470758438999548140726103882523526460632932758848850419784646449190855119546581907152400013892131830430363417922752725911748860326944837167427691071306540321213837143845664837111L
p = 0
for k in range(int(e/2),e):
delta = 1+4*k*n*e
if gmpy2.is_square(delta):
y = gmpy2.isqrt(delta)
if (y-1)%(2*k) == 0:
p1 = (y-1)/(2*k)
if n%p1 == 0:
print("Found!")
p = p1
break
q = n/p
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
key = RSA.construct((n,e,long(d)))
data = open('revolutional-secure-angou/flag.encrypted', 'r').read()
print(key.decrypt(data))
```